Comparison of the Progressive Collapse Resistance of Seismically Designed Steel Shear Wall Frames And Special Steel Moment Frames
Authors
Abstract:
In this study, the progressive collapse potential of seismically designed steel plate shear wall (SPSW) systems is investigated using the alternate path method, and their performances are compared with those of the conventional special moment frame (SMF) systems. Nonlinear static and dynamic analyses are conducted to follow the progressive collapse of the structures, and their ability of absorbing the destructive effects of member loss is investigated. The obtained results show that when a corner or a middle column in the first story of the SPSWs is removed, the rest of the structure is not able to provide an appropriate alternative path for redistributing the generated loads caused by member loss, and therefore the structure presents a high potential for progressive collapse. However, by changing the lateral load resisting system of these buildings with the SMFs, the progressive collapse resisting capacity of the buildings increases significantly.
similar resources
Comparison of Progressive Collapse Capacity of Steel Moment Resisting Frames and Dual Systems with Buckling Retrained Braces
Progressive collapse is a condition where local failure of a primary structural component leads to the collapse of neighboring members and the whole structure, consequently. In this paper, the progressive collapse potential of seismically designed steel dual systems with buckling restrained braces is investigated using the alternate path method, and their performances are compared with those of...
full textRobustness Assessment of Steel Moment Resisting Frames
Nowadays, many buildings with steel Moment Resisting Frames (MRF) are built in seismic zones when seismic codes are at its early stages of development, and as such, these structures are often designed solely to resist lateral wind loads without providing an overall ductile mechanism. On the other hand, current seismic design criteria based on hierarchy of resistance allow enhancing the structur...
full textPERFORMANCE-BASED OPTIMIZATION AND SEISMIC COLLAPSE SAFETY ASSESSMENT OF STEEL MOMENT FRAMES
The main aim of the present study is to optimize steel moment frames in the framework of performance-based design and to assess the seismic collapse capacity of the optimal structures. In the first phase of this study, four well-known metaheuristic algorithms are employed to achieve the optimization task. In the second phase, the seismic collapse safety of the obtained optimal designs is evalua...
full textEffect of degradation on collapse margin ratio of steel moment frames
Although several studies have investigated the effect of degradation on the behavior of structures, investigations on collapse margin ratios are rare in the literature. In this study, the effect of strength and stiffness degradation on collapse capacity of steel moment frames is investigated. The aim is to determine margin of safety against collapse using a probabilistic approach. For this reas...
full textCharacterizing Ground Motions That Collapse Steel Special Moment-Resisting Frames or Make Them Unrepairable
This work applies 64,765 simulated seismic ground motions to four models each of 6or 20-story, steel special moment-resisting frame buildings. We consider two vector intensity measures and categorize the building response as “collapsed,” “unrepairable,” or “repairable.” We then propose regression models to predict the building responses from the intensity measures. The best models for “collapse...
full textEvaluating Response Modification Factors of Concentrically Braced and Special Moment Steel Frames in Duplex Buildings
Response modification factor (R-factor) is one of the seismic design parameters to consider nonlinear performance of building structures during strong earthquake. Relying on this, many seismic design codes led to reduce earthquake loads imposed to the structure. The present paper tries to evaluate the R-factors of conventional concentric braced frames (CBFs) and special moment frames (MRFs) in ...
full textMy Resources
Journal title
volume 28 issue 6
pages 871- 879
publication date 2015-06-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023